Code No.: 14122

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) IV-Semester Main Examinations, January-2021 Numerical Methods, Probability and Statistics

(Common to Civil, EEE & Mech.)

Time: 2 hours

Max. Marks: 60

Note: Answer any NINE questions from Part-A and any THREE from Part-B

 $Part-A (9 \times 2 = 18 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Evaluate $\Delta^2(e^x)$, taking $h=1$.	2	2	1	1,12
2.	Find the second divided difference of $f(x) = \frac{1}{x}$ using the points a, b, c .	2	2	1	1,12
3.	Write the expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ using Newton's backward	2	1	2	1,12
4	interpolation formula.		2		1 10
4.	Using Euler's method, find the approximate value of $y(0.1)$ for the initial value problem $y' = x^2 + y^2$, $y(0) = 1$.	2	3	2	1,12
5.	Define discrete and continuous random variables with an example.	2	1	3	1,12
6.	If the probability density function of a continuous random variable X is $f(x) = ae^{- x }$, $-\infty < x < \infty$, then find the value of a.	2	2	3	1,12
7.	Define (i) null hypothesis and (ii) alternate hypothesis.	2	1	4	1,12
8.	Write short note on type I and type II errors.	2	1	4	1,12
9.	Test whether the equations $x = 4y + 5$ and $y = \frac{1}{8}x + 4$ represent	2	2	5	1,12
10.	valid regression lines. Show that the coefficient of correlation is the geometric mean of regression coefficients.	2	2	5	1,12
11.	State Lagrange's interpolation formula.	2	1	1	1,12
12.	Write Runge-Kutta method of fourth order formula.	2	1	2	1,12
	Part-B $(3 \times 14 = 42 Marks)$				
13. a)	Find $f(x)$ by Newton's forward and backward interpolation formulae from the following data:	7	3	1	1,12
	x: 1 2 3 4 f(x): -1 -1 1 5				
b)	If $y_1 = 168$, $y_7 = 192$, $y_{15} = 336$, then find y_{10} using Lagrange's interpolation formula.	7	3	1	1,12

	Find $\frac{dy}{dz}$	$\frac{y}{x}$ and	$\frac{d^2y}{dx^2}$ a	at $x =$	0.0 fro	om the f	ollowii	ng data:	11 AC	(ES) (N	7	2	2	1,12
		x:	0.0	0.2	0.4	0.6	0.8	1.0						
		y:	0.0	0.12	0.48	1.10	2.0	3.20						
b)	1	Γaylor's nitial va						nate va	lue of	y(0.1)	7	3	2	1,12
15. a)	A rando	m varial	ole X	has the	follow	ing pro	bability	y distrib	ution.		7	2	3	1,12
		X:	0	1	2	3	4							
		P(X):	3k	31	k K	2k	61	K		allahm				
	Find (i)	k (ii) l	E(X) ((iii) Va	r(X) (iv) P(2	(< 2)							
b)	The rar	ndom va d deviati	ariable	X is	norma	lly dist	ributed				7	3	3	1,12
6. a)	A rand	om samp	ole of '	7 stude	nts had	the fol	lowing	I.Q's:		- 1. (12	7	4	4	1,12
		105, 102				that =	m/Luny		Titun					
		nis data : 5% level			laim of icance.		ulation	mean	of I.Q	100 ?				
b)	a to anter una light and a second								7	4	4	1,1		
7. a)		method	of leas	t squar	res to fi	t a strai	ght line	y = a	+ <i>bx</i> f	or the	7	2	5	1,1
17. a)		method		t squar	res to fi	t a strai	ght line	e y = a	+ <i>bx</i> f	or the	7	2	5	1,1
17. a)		method	: 0	2		-	ght line	e y = a	+ <i>bx</i> f	or the	7	2	5	1,1
b)	followin	methoding data:	: 0	2 5.	5 12	7 20				npads	7	2	5	
	followin	method mg data: x y ute the cong data:	: 0	2 5.	5 12	7 20 on betw				npads				
	Compu	method ng data: x y ute the cong data:	: 0 : -1	2 5. ent of c	5 12 orrelati	7 20 on betw	veen X	and Y	from	npads				
	Compute following X	method ng data: x y ute the cong data:	: 0 : -1 pefficie	2 5. mt of c	5 12 12 15 15 15 16 17 17 17 17 17 17 17	7 20 on betw 6 4 17	veen X	and Y	from 9	npads				
b)	Compute following X	method ng data: x y ute the cong data: 1 12 find the	: 0 : -1 pefficie 2 11 regress	2 5. ent of c	5 12 15 15 15 16 17 17 17 17 17 17 17	7 20 on between 6 4 17 on y.	7 16	8 19	7 from 9 10	the	7	2	5	1,1
b)	Compute following X	method ng data: x y ute the cong data:	: 0 : -1 pefficie 2 11 regress	2 5. ent of c	5 12 orrelati 4 5 15 1 e of x ofference	7 20 on between 6 4 17 on y.	veen X	8 19	7 from 9 10	the				1,1
b)	Compute following X	method ng data: x y ute the cong data: 1 12 find the	: 0 : -1 pefficie 2 11 regress 's divid	2 5. ent of c	5 12 orrelati 4 5 15 1 e of x ofference	7 20 on betw 6 4 17 on y. formulating data	veen X	8 19	7 from 9 10	the	7	2	5	1,1
b)	Compute following X	method ng data: x y ute the cong data: 1 12 find the Newton	: 0 : -1 pefficie 2 11 regress 's divid	2 5. ent of co	5 12 orrelati 4 5 15 1 e of x of ference follow	7 20 on between 6 4 17 on y. e formulating data	veen X 7 16 a, find	and \(\) 8 19 f(8) and	from 9 10 10 d f(12)	the	7	2	5	1,12

Code No.: 14122

19.		Answer any two	of the followin	g:						
	a)	If X is a discrete random variable, then prove that $E(aX+b) = aE(X+b)$ and $Var(aX+b) = a^2 Var(X)$, where a and b are constants.							3	1,12
	b)	In experiments on pea breeding, the following frequencies of seeds were obtained:							4	1,12
		Round and Yellow	Wrinkled and Yellow	Round and Green	Wrinkled and Green	Total				
		315	101	108	32	556				
		Theory predicts correspondence l	etween theory	and experime	ent.					
	c)	If $x = 4y + 5$					7	3	5	1,12
		and y on x res	spectively, sho	w that $0 < 4k$	<1 and if i	$k = \frac{1}{20}$, find				
		\overline{x} and \overline{y} .								

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 & 2)	44.88
2	Knowledge on application and analysis (Level-3 & 4)	55.12
3	*Critical thinking and ability to design (Level-5 & 6) (*wherever applicable, subject to a maximum of 10%)	0
